SINGH’S INDEX ACCURACY WITH DEXA SCAN FOR EVALUATION OF OSTEOPOROSIS

Raja Irfan Qadir, Syed Imran Bukhari
Department of Orthopaedics, Northwest General Hospital & Research Centre, Peshawar - Pakistan

ABSTRACT

Objective: To compare Singh’s index accuracy versus DEXA scan in diagnosing osteoporosis in post-menopausal women.

Material & Methods: This was a cross-sectional study, conducted in the Department of Orthopaedics, Northwest General Hospital & Research Centre, Peshawar, Pakistan, involving 120 post-menopausal women at Northwest General Hospital & Research Centre, Peshawar, from June 2015 to December 2015. All patients had X-ray Pelvis and DEXA scan was done.

Results: There was ‘slight agreement’ between DEXA scan and Singh Index on the basis of Kappa statistics (.088). Mean age was 62.91 ± 9.6 SD. Chi-square value was 1.106, p-value was 0.293 which was not significant.

Conclusion: Singh index assessment for osteoporosis is not reliable and can not be a valid substitute for DEXA scan.

Keywords: Singh index, DEXA scan, osteoporosis.

INTRODUCTION

Osteoporosis is characterized by low bone mass and micro architectural deterioration of bone tissue, with a consequent increase in bone fragility and susceptibility to fractures¹. Osteoporosis has become epidemic. It causes approximately 8.9 million fractures per year worldwide. In Pakistan, this "silent disease" affects 6.7 million peoples and it will increase to more than 7.1 million by 2020. According to advocacy group, National Osteoporosis Foundation USA, 1/3 women over 50 will experience osteoporotic fractures, as will 1/5 men².

The early diagnosis of osteoporosis is crucial to mitigate the social and economic burden due to ensuing osteoporotic fractures³. Plain radiographs allow qualitative and semi-quantitative evaluation of osteoporosis, whereas other imaging techniques allow quantification of bone loss (e.g., dual-energy x-ray absorptiometry and quantitative computed tomography [CT]), assessment for the presence of fractures (morphometry), and the study of bone properties (ultrasonography). Measurement of bone mineral density (BMD) by DEXA scan is the cornerstone for management of osteoporosis⁴. DEXA scanners were introduced in 1987 and have entered common clinical practice with proven ability to predict fracture risk with high specificity.

The Singh’s Index, which shows trabecular patterns in the proximal femur on plain radiographs has been used as a predictor of osteoporosis. Singh’s suggested that the index could be used to differentiate patients with osteoporosis from normal individuals. However, the Singh’s Index has been criticized for its low reliability due to high inter-observer and intra-observer variability in grading for osteoporosis⁵. We wanted to assess the accuracy of Singh index with respect to DEXA scan and whether Singh index can be a reliable substitute for DEXA scan in a primary care setting.

MATERIAL & METHODS

One hundred & twenty post-menopausal women with clinical risk factors (Age, Low body mass index, prior fracture after age 50, parental history of hip fracture, current smoking habit, current or past use of systemic steroids, alcohol intake > 2 units daily, Rheumatoid arthritis) for osteoporosis were included in the study. X-ray Pelvis and DEXA scan were done in all patients. Written informed consent was taken for inclusion in the study. Bone mineral content was assessed with DEXA scanner, Hologic Discovery QDR. T-score was used for reporting Table 1. Singh index was calculated from plain X-rays Figure 1 and 2. The data was analyzed with SPSS 16.0. Kappa statistic, chi-square test keeping p-value < 0.05 as significant were used. Mean and Standard deviation were used for quantitative variables.
RESULTS

Mean age of the patients was 62.91 ± 9.6 SD with minimum age 43 and maximum age of 88, mean T-score Hip was 2.06 ± 1.188 SD, Table 1, mean BMI was 28.54 + 6.62 SD with minimum of 16.80 and maximum of 59.80, mean BMD was 0.64 ± .14 with minimum of .304 and maximum of 1.134.

Kappa statistics to assess the level of agreement between Singh Index and DEXA scan was 0.088, which suggests “Slight Agreement”, as per Landis & Koch criteria Table 1 and 2. Chi-square value was 1.106, and p-value was 0.293, which is not significant. Our data is normally distributed as per Kolmogorov-Smirnov (0.082) and Shapiro-Wilk test (0.170). Both are non-significant as shown in Table 3.

<table>
<thead>
<tr>
<th>Diagnosis</th>
<th>T-score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>>-1</td>
</tr>
<tr>
<td>Osteopenia</td>
<td><-1 to > -2.5</td>
</tr>
<tr>
<td>Osteoporosis</td>
<td><-2.5</td>
</tr>
<tr>
<td>Severe osteoporosis</td>
<td><-2.5 + fragility fracture</td>
</tr>
</tbody>
</table>

DISCUSSION

Osteoporosis has become an epidemic and is considered to be an inevitable consequence of aging and a by-product of industrialization. Epidemiological studies lead by WHO have highlighted the high burden of the disease with significant morbidity, mortality and costs associated with its complications. The past few years have seen major improvements in diagnosis and management of osteoporosis and it is now possible to detect the disease before fractures occur4,5.

In both men and women with different racial backgrounds, bone mass increases with age until approximately thirty years of age and then begins to decrease. It is widely accepted now that the main factor causing osteoporosis is low peak bone mass when reaching adult age. At menopause, estrogen levels drop which lead to a 1% to 3% drop per year in bone mineral density for as long as ten years, followed by a slower loss of bone density. Men start out with a higher peak bone mass than women, and lose bone at a slower rate than women do6.

In 1970, Singh et al. showed in their landmark study how the trabecular patterns of the proximal femur thinned out in the course of osteoporosis. They described six trabecular patterns: grades 3 and lower showing increasing degrees of osteoporosis. The pattern of trabecular loss provided a semi quantitative estimate of osteoporosis, which they suggested would be a valuable and inexpensive tool in assessment of osteoporosis7.
The use of Singh’s Index in evaluating bone mineral density has been controversial. It relies on observation and thus has an inherent drawback. Singh et al. agreed that there may be sometimes difficulty in grading with occasional difference of opinion which, however, do not amount to more than one grade. The limitations of plain radiographs include inability to see the trabeculae clearly due to soft tissue shadow in an obese patient and poor quality of radiographs due to technical problem which can be poor positioning of the patient, poor image resolution, improper distance between patient and X-ray tube\(^8\)\(^\text{11}\).

Plain radiographs may be inexpensive and easily available but have a very low sensitivity, as around 30\% - 40\% of demineralization must take place before changes appear on a plain radiograph\(^1\)\(^2\). DEXA scan is the gold standard for measurement of bone mineral density for clinical use and has been shown to have high short-term and long term precision as well as low rate of error in reproducibility in measurement of BMD T6. Use of DEXA scan as a screening method in low income countries may not be feasible as it is expensive and not easily accessible. Hence, the relatively cheap and easily available methods to assess bone mass such as Singh’s Index, Calcaneal Index, Radial Index and Metacarpal Index are in common use but these are relatively insensitive and detect osteoporotic changes at a relatively later stage\(^13\)\(^14\).

Our study showed that there is “slight agreement” between DEXA scan and Singh Index, which means that Singh Index cannot be a reliable substitute for the gold standard DEXA scan. It is in agreement with the available literature. Salamat et al\(^7\) concluded that there was no any correlation between the Singh index and bone densitometry. Koot et al\(^8\) demonstrated that Singh Index has no value in assessing the grade of osteoporosis because of its low reliability.

ACKNOWLEDGMENT

Sincere thanks to Dr. Iqbal Wahid for help in statistics.

REFERENCES

CONFLICT OF INTEREST: Authors declare no conflict of interest

GRANT SUPPORT AND FINANCIAL DISCLOSURE: NIL

AUTHOR’S CONTRIBUTION

Following authors have made substantial contributions to the manuscript as under:

Qadir RI: Formulation of hypothesis and collection of data.
Bukhari SI: Writing the research article.

Authors agree to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

ONLINE SUBMISSION OF MANUSCRIPT

It is mandatory to submit the manuscripts at the following website of JMS. It is quick, convenient, cheap, requirement of HEC and paperless.

Website: www.jmedsci.com

The intending writers are expected to first register themselves and then attach/submit the manuscript. If processing fee is not submitted before should be deposited with Managing Editor in cash or can submit in the form of bank draft in the name of editor JMS. Also follow the format and check list of the Journal. Author agreement can be easily downloaded from our website. A duly signed author agreement must accompany initial submission of the manuscript.